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Non-equilibrium inviscid flows behind a spherical-segment shock wave are 
investigated with the method of series truncation. This semi-analytical technique 
developed at Stanford is based on a systematic co-ordinate-perturbation scheme. 
The flow variables are expanded in series in powers of the longitudinal curvilinear 
co-ordinate leading away from the stagnation point. The problem is thus reduced 
to one of numerical integration of ordinary differential equations for functions 
of the normal co-ordinate. Unlike the similar situation of the Blasius series in 
boundary-layer theory, the present scheme-having to deal with elliptic equations 
-must resort to series truncation. As a consequence, a truncation error is intro- 
duced. The present paper shows a simple way of reducing this error. 

The simplified air chemistry adopted is based on non-equilibrium dissociation 
and recombination of oxygen diluted in inert nitrogen. A wide spectrum of non- 
equilibrium regimes is investigated for a fixed set of flight conditions. In  parti- 
cular, near-frozen flows are followed to the vicinity of the stagnation point through 
a region of large temperature and concentration gradients located near the body. 
This equilibrium-drive region, arising from the singular nature of the frozen 
limit, is studied in some detail. 

1. Introduction 
For some flight conditions frequently encountered in atmospheric entry, the 

heat involved in lagging chemical reactions is not small compared with the 
internal energy of the flow. Under these conditions chemical non-equilibrium 
effects can be expected to play an important role in determining flow properties 
such as temperature and species concentrations. It is now known that this is 
particularly true in the important class of flow problems associated with blunt- 
nosed vehicles. Strong shocks and embedded low-speed regions are distinctive 
characteristics of blunt-body flows, and several specialized techniques have been 
devised to deal with this problem. In the last few years several authors have 
incorporated vibrational or chemical relaxation into the following blunt-body 
theories: Newtonian approximation; inverse marching integration; boundary- 
layer-type techniques; stream-tube chemistry; shock-mapping technique; and 
method of integral relations. Each one of these methods has its own advantages 
and shortcomings, It would appear that a simple answer to this seemingly simple 
problem is yet to be found. 

In  the present investigation an effort is made to keep the treatment of the 
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problem as straightforward as possible, while using a minimum of restrictive 
assumptions. For this purpose the blunt-body flow including chemical non- 
equilibrium is analysed with the method of series truncation, with encouraging 
results. A flexible tool is developed that allows a comprehensive study of 
non-equilibrium rkgimes. Subsequent investigation of some of the salient flow 
features yields a better understanding of non-equilibrium flows in matters such 
as the chemical-relaxation behaviour in the vicinity of a stagnation point. 

Some of the major features of non-equilibrium blunt-body flows were un- 
covered by Freeman (1958) when he used the Newtonian approximation- 
together with Lighthill’s ideal dissociating gas and a rate equation of his own- 
to deal with chemically relaxing flow about a sphere. His numerical results 
indicated that significant changes in the flow could be induced by changing non- 
equilibrium regimes. The stand-off distance and shock shape were affected, as 
well as the chemical-species concentrations across the shock layer. Later research 
has confirmed these findings. In  the same paper Freeman argued that the long 
local-residence time near the stagnation point would result in the flow achieving 
equilibrium in that region. This statement appears to be supported by his 
numerical results. In  the present work more detailed evidence is exposed, which 
indicates that indeed this is the case. Freeman’s Newtonian approximation, 
which does not allow for appreciable velocity changes along the body (or any 
other streamline), yields the result that chemical equilibrium persists along the 
body, a conclusion which is not borne out by later works, including the present 
paper. Ellington (1963) has recently extended the same method, and Blythe 
(1963) has used a similar approach to deal with vibrational relaxation. 

In  1960 Lick used the inverse marching method (see Hayes & Probstein 
1959) to deal with non-equilibrium blunt-body flows. This numerical method is 
exact in the sense that no simplications are introduced in the governing equa- 
tions. An undesirable feature is that it suffers from numerical instability, 
resulting in the need for an integration mesh greater than a certain minimum. 
The corresponding lack of resolution is felt, for instance, in regions close to the 
body in near-frozen flows. This is perhaps the reason why Lick’s results do not 
bridge the large apparent gap in surface values of density and temperature 
existing between frozen and near-equilibrium flows. Hall, Eschenroeder & 
Marrone (1962)) Marrone (1963), and later on Lee & Chu (1964) have used the 
same technique to handle realistic, full-chemistry air models. These efforts have 
provided a good amount of information about reacting blunt-body flows. 

In 1961 Chung and Murzinov independently used boundary-layer-type 
techniques to deal with relaxing flows on the stagnation streamline. Similar 
techniques were used before by Hayes, and Li & Geiger (see Hayes & Probstein 
1959), in dealing with perfect-gas flows. Chung considered viscous, chemically 
reacting flow through a thin shock layer. Ihrzinov used the thin-layer assump- 
tion to deal with inviscid, vibrationally-relaxing flows. 

The stream-tube-chemistry approach originated by Bloom & Steiger ( 1960) 
and Lin & Teare (1961) has been used in a large-scale sense to follow the chemical 
behaviour around bodies. Its delicacy for local application is doubtful, parti- 
cularly in regions like the stagnation streamline. 
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In  1962 Gibson & Marrone introduced a flow-mapping technique to deal with 
non-equilibrium scaling in blunt-body flows. They established an approximate 
correspondence between the relaxing one-dimensional field behind a normal 
shock and the blunt-body flow field. This allowed them to compute blunt-body 
flows by reference to normal-shock solutions. 

Dorodnitsyn’s numerical method of integral relations (Hayes & Probstein 
1959) has been used by several authors in the forms of scheme I (where the shock 
layer is divided into longitudinal strips) and scheme I1 (transversal strips) to study 
non-equilibrium flows. Shih & Baron (1964), and Springfield (1964) used a one- 
strip, scheme I formulation to deal with full-chemistry air models. Belotserkov- 
skii & Dushin (1964) treated reacting oxygen flows by means of scheme 11, on 
the grounds that it is better suited to follow the abrupt changes exhibited by non- 
equilibrium flow variables across the shock layer. In  a later work Lun’kin & 
Popov (1964) obtained the same results by means of scheme I, used in a two- 
strip approximation with special handling of the chemical-rate equation. 

A consistent picture emerges from the study of the above-mentioned authors. 
On one hand, the methods of Freeman, Chung, Murzinov, and Gibson & Marrone 
are characterized by carrying the analytic treatment to a certain extent, with the 
final results being obtained by more or less simplified numerical computations. 
These methods include restrictions of the type of the thin shock-layer assumption, 
local-similarity assumption, etc. Within these restrictions they are flexible 
techniques as is evidenced by the wide range of non-equilibrium conditions 
covered by these authors. On the other hand, the purely numerical approaches of 
Lick, Hall, Belotserkovskii, Shih & Baron, etc., while avoiding the use of simpli- 
fying assumptions, appear unable to cover such a wide range of non-equili- 
brium flows, as indicated by a lack of results in the near-frozen regimes. 

The present semi-analytical approach is as free of restrictive assumptions as 
the numerical methods, and yet it retains the field resolution and ability to cope 
with large gradients of the more restricted techniques. This ability is exploited 
by investigating a wide spectrum of non-equilibrium regimes ranging from near- 
equilibrium to near-frozen flows. In particular, near-frozen flows are studied in 
the vicinity of the stagnation point, a region long neglected in previous works. 
Here the flow is found to be dominated by a drive toward equilibrium, a condition 
resulting in large temperature and species-concentration gradients. In  this 
equilibrium-drive region the dynamics of the flow is practically uncoupled from 
the chemistry. This is a region of creeping motion and constant pressure, where 
chemical relaxation forces the flow toward equilibrium with a nearly linear 
relationship between temperature and degree of dissociation. 

2. Analysis 
The problem considered is the inverse one of plane or axisymmetric flow behind 

the front portion of a circular-cylindrical or spherical shock wave, respectively. 
The flow is assumedsteady and adiabatic, and devoid of viscosity, heat conduction 
and diffusion. The free stream is assumed uniform, including its chemical com- 
position. The co-ordinate system is shown in figure 1. The characteristic length 
is the radius of the shock f8, to which all lengths are referred. 

5-2 



6Y Ruul J .  Gonti 

The physical flow variables are non-dimensionalized by reference to free- 
stream conditions. Thus, p and T are the density and temperature referred to 
pa and T,; u and 11 are the velocity components along r and 0 referred to U (the 
free-stream speed), and j p  is the pressure referred to p a  U2 .  Time t is referred to 
the characteristic flow time ?JU, and h is the static enthalpy referred to U 2 .  

FIGURE 1. Polar co-ordinate syste~n. 

Subscripts b and s are used to denote conditions at the body and immediately 
downstream of the bow shock, respectively. Subscript e denotes equilibrium 
conditions. 

Chemicully relaxing gas model 

Translational, rotational, and vibrational degrees of freedom are assumed in 
local equilibrium everywhere. Chemical non-equilibrium is allowed. The working 
gas is assumed to be a mixture of thermally perfect N,, 0,) and 0 (or any other 
similar gases). Nitrogen is an inert diluent and oxygen undergoes dissociation-- 
recombination reactions of the type 

O,+P Z 2 O + P )  

where Y represents, with the appropriate rate constant, N,, O,, or 0. Under 
these conditions the chemical state of the system can be characterized by the 
degree of dissociation 

mass of atomic oxygen a = _ _ ~ ~  
total mass of oxygeiT ' 

The molecular-oxygen mass-fraction is then given by 1 -a, and a lies in the 
range between zero and unity. This model is realistic for air under conditions such 



A theoretical study of non-equilibrium blunt-body jlouis 69 

that vibrational non-equilibrium and nitrogen dissociation are negligible. The 
equilibrium properties of the mixture are dependent upon an equilibrium ‘ con- 
stant ’ of the type 

K(T)  = ATBexp(-C/T), 

and two true constants: a parameter /3 (the dilution ratio) equal to the mass ratio 
of nitrogen to oxygen, and 6, the ratio of molecular weights Mo2/MN2. The constants 
A ,  B, and C are given in table 1. C is the dissociation energy per molecule referred 
to Boltzmann’s constant and Tm. 

Altitude 30 km Flight speed 4.3 km/sec 

T, = 230 O K  pm = 1.786 x 10-2 kg/m3 a, = 0 
@ = 3.294 8 = 1.142 MOy = 32 kg/kmol 

Iikpdibrium constant Rate constant 

where 
K(T)  = ATB exp ( -  C/T) k(T) = DTE exp ( -  C/T) 

A = 1.2 x 1O6(T,)S km0l/m3, B = -4, C = 5-95 x 1P/!Pm 

Reaction 
partner P D ,  mS/(kmol.sec) e I’ 

0, 1.9 x 10IS(T,)E - 1.5 2.25 x lOS/T, 
4-75 x 1 0 1 7 ( ~ , ) ~  - 1.5 3-35 x 1 0 3 / ~ ,  

0 6.35 x lO”(T,)E - 2.0 - 
N2 

TABLE 1. Numerical constants (MKS units used throughout). 

For the present gas model the thermal and caloric equations of state are, 
respectively, 

where R is a dimensionless gas constant equal to the universal gas constant 
referred to Mo,( 1 + p) U2/Tm, and V is the characteristic temperature of molecular 
vibration referred to T,. In a non-equilibrium situation the rate of change of a is 
given by the chemical-rate equation which, in the present case, is 

where the quantity in the fist curly brackets is a characteristic-flow time r f ,  
the quantity in the second curly brackets is the reciprocal of a chemical local- 
relaxation time rch,  and the quantity in the last curly brackets is the function 
X(a,p, T ) ,  a measure of the departure from equilibrium. The expression for 7,. 
contains three rate ‘ constants ’ of the Arrhenius type 

k = DTE exp ( - C/T), 

where D and E are constants dependent upon the reaction, as shown in table 1. 
In the expression for x the term ( 1  -a )  represents the forward (dissociation) 
reaction, and the term proportional to a2represents the three-body recombination 
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reaction. In  a state of equilibrium the degree of dissociation is given by the law 
of mass action as 

l -a ,  4Pm Pe 

that is, in equilibrium x = 0 ,  and this algebraic relation replaces the rate equation. 
In  a, general flow situation the non-equilibrium regime depends upon the ratio of 
characteristic-flow time to chemical-relaxation time. In the present work the 
level of chemical-relaxation time (dependent upon free-stream conditions) is 
kept constant. Different non-equilibrium regimes are obtained by changing the 
physical radius of the shock, Fs. Large values of F, (large flow times) correspond to 
regimes close to equilibrium, whereas small values of Ps yield flows near the 
frozen limit (Ps = 0) .  

Flow equations and boundary conditions 

Under the previous assumptions of steady, adiabatic, inviscid flow and in the 
polar co-ordinates of figure 1 the differential equations for plane ((T = 1) or 
axisymmetric ((T = 2) flow expressing conservation of mass, momentum, and 

(4) 

energy are 
- [(sin e) ' - irup~] + - [ru-l(sin8)'-1pv] = 0,  
ar a8 
a a 

au p v  au aP pu--+- --v + - - 0 ,  
ar r (ae ) ar 

pu-+- av P v j a v  -+u ) +----=o, ;$ 
ar r a0 

To these four equations are added the thermodynamic equations of state 
(equations (1)  and (2))) and the chemical-rate equation in the form 

The shock boundary conditions are obtained by applying the conservation 
equations across the specified shock wave, namely 

a, = a,, us = urn, us = Urn€,  € 3 l/&, (8) 

PS = P m + U L ( 1 - - ) ,  (9) 

h, = h,+&2,(1-~2) .  (10) 

This system is solved by iteration on 6 and with the help of the equations of state, 
the iteration being necessary because of the gas imperfection introduced by 
molecular vibration. The body boundary condition is that of zero normal 
component of velocity at the surface of the body. The conservation, state and 
rate equations (equations ( 1 )  to  (7)))  together with the shock and boundary 
conditions, constitute a determinate system describing the flow in question 
exactly. 
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Method of solution 

The problem is solved in semi-analytic fashion by the method of series truncation. 
This method was first applied to the blunt-body problem by Swigart (1962), and 
later improved by Kao (1964), Van Dyke (1964a, b )  and the author (Conti 1964). 
It is based on a co-ordinate perturbation for small 8 (or an equivalent co-ordinate) 
about the line of symmetry 8 = 0. A classical example of such a co-ordinate 
perturbation is found in boundary-layer theory in the form of the Blasius series 
(Schlichting 1960). There the stream function is formally expanded in series in 
powers of the longitudinal boundary-layer co-ordinate, with unknown functions 
of the normal co-ordinate alone as coefficients. Introduction of this series into 
the boundary-layer equation yields successive-order sub-problems in terms of 
ordinary differential equations for the unknown functions. These sub-problems 
are coupled, but each one can be solved exactly in terms of lower-order solutions. 
This establishes a one-way sequence in the solution of the original equation. 
Sub-problems are solved numerically by single-variable integration across the 
boundary layer. Thus, the longitudinal-co-ordinate dependence is by-passed in 
the actual process of solution while being retained in the original problem. 

Essentially the same procedure is involved in the method of series truncation, 
with one major difference derived from the elliptic nature of the blunt-body 
equations. In  physical terms, a co-ordinate perturbation such as described above 
fits naturally with problems exhibiting downstream influence only. Hence its 
success in dealing with the parabolic boundary-layer equation. The upstream 
influence associated with elliptic equations results in disruption of the orderly 
sequencing of sub-problems. However, approximate treatment of the elliptic 
equations as if they were parabolic is possible, and on this fact rests the method of 
series truncation, A more detailed description follows. 

S s  a, first step the problem is cast in a convenient form. The continuity 
equation (equation (4)) is used to define a stream function $ such that 

d@ = (rsin8)"-1 (pvdr  -purd8). (11) 

Then equations (5), (6), (7) and (3  13) are manipulated algebraically with the help of 
equations ( l ) ,  (2) and (11) to obtain a fifth-order system of four equations in the 
four unknowns 9, p ,  T and a. The resulting momentum equations are of second 
order in $. This is the basic system of equations, and it is still exact. 

Now the dependent variables are formally expanded in series in powers of 
sin 6 and cos 6. Thus, 

$(r ,d )  = (sing@ [$pl(r)+~2(r)sin2d+O(sin48)],  (12a) 

p(r ,  8) = pl(r) cos2 8 +pz ( r )  sin2 O+ O(sin4 8), (126) 

T(r,  8)  = T,(r) cos2 8 + T2(r) sin2 0 + O(sin4 8), ( 1 2 4  

a(?, 8 )  = a, + al(r) cos2 0 + a2(r) sin2 8 + O(sin4 8). ( 1 2 4  

These are asymptotic expansions for small 8. Subscript 1 corresponds to the 
first-order problem, subscript 2 to the second-order problem, etc. The form of the 
expansions is suggested by various considerations. Expansion (12a) is dictated 
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by the symmetry and antisymmetry of the velocity components u and v, 
respectively, and the fact that v is small for small 8. The first term of (12b) is 
suggested by the generally observed behaviour of the pressure along the shock 
layer, with the second term being a perturbation thereof. Expansions (12c) and 
( 1 2 4  are tentative. Actually, the cosinusoidal-square variation of ( 1 2 4  is too 
pronounced for a first approximation, in view of early chemical freezing. 

Expansions (12) are substituted into the basic system of equations. Then, 
collection of terms in like powers of sin 0 yields a system of four equations of the 
following form: 

r&l(r, 91, Pl, “1, T1)I + [ 4 2 ( r ,  $1, PI, “1, TI, $ 2 > P 2 ,  a 2 ,  T2)l sin2 0 + O(sin4@) = 0, 

+ “4&, $1, PI, a,, TI, $2, Pa “2,  T2, P3)I sin2 0 + 0(sin4 8)  =.o, 
[N41(r, $ljPl) “1, Tl,P2)1 

(13) 

where the Nii (i = 1 , 2 , 3 , 4 ;  j = 1 , 2 ,  . . .) are non-linear ordinary differential func- 
tions. The assumption that expansions (12) and equations (13) are valid for small 
but otherwise arbitrary 0 yields Nii = 0. In  this notation i is a dummy index for 
the jth-order problem. Thus, the first-order problem is governed by the four 
differential equations Nil = 0, the second-order problem by Ni2 = 0, and so on. 
Notice that each of these problems contains a function belonging to the next-order 
one: in the first-order problem N41 contains p2(r) ,  in the second-order problem 
Nd2 contains p3(r), etc. This establishes a two-way interdependence of the 
problems which is in striking correspondence with the physical upstream 
influence of the present subsonic flow. In  contrast, the parabolic boundary- 
layer equation results in a self-contained first-order problem and higher-order 
problems solvable exactly in terms of the previous ones. 

Clearly, then, the present case stands a t  the point where each sub-problem is 
an indeterminate one, having four equations for five unknowns. This situation is 
solved summarily in the method of truncations by setting the offending function 
equal to zero within each sub-problem. This is equivalent to successive truncations 
of series (126); hence the name of the method. In this way the problem is 
rendered solvable but at the price of introducing an approximation. Obviously, 
more refined schemes are possible, such as assigning non-zero values t op2 ,  p , ,  etc., 
on the basis of previous experience. Kao (1964) followed this line by arbitrarily 
extracting an equation for p2(r) from the second-order problem, with very good 
results. However, practical applications show that the simple device of trunca- 
tion also gives very good results provided some care is exercised in formulating 
expansions ( 12). 

In the actual solution by truncation the first truncation consists in solving 
Nil = 0 withp, = 0 and appropriate boundary conditions. This yields an approxi- 
mate solution to the first-order problem. The second truncation consists in 
solving the simultaneous system of eight equations Nil = Ni2 = 0 with p, = 0, 
which yields solutions to both the first- and second-order problems, now in the 
presence of a non-zero p2. First-order solutions from both truncations are com- 
pared for convergence. The same process would be followed in the third trunca- 
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tion (Nil = Ni, = Ni3 = 0) and further ones until satisfactory numerical con- 
vergence is obtained. 

Since algebraic complexity increases considerably with each successive trunca- 
tion, it is important to realize the best possible convergence. To this end, the 
choice of variables and the form of expansions (12) are relevant. It is clear that, 
i fp2 is small, the error introduced by the first truncation will also be small and 
convergence will be improved. One way of ensuring thatp,be small is to formulate 
expansion (12 b )  in such a way that the first term is a meaningful approximation 
to the actual situation at hand. In  the present case this simple idea results in a 
significant improvement. This is illustrated by the limiting case of frozen (perfect- 
gas) flow. Here, only two variables need be expanded, and Swigart (1962) works 
with t,he stream function expanded as (1  2 a )  and density expanded in the form 

p(r,  0 )  = pl ( r )  +pz(r)  sin2 0 + . . . . 
With the first term independent of 0, this is a good hypersonic approximation 
near the shock, but not on the body, where Newtonian pressure dictates a density 
proportional to (cos f9)z'y. In  this context it is then difficult to represent density 
properly, and it must be discarded as a basic variable. Instead, the present 
expansion (126) exploits the fact that pressure is well-represented by a cosinu- 
soidal-square variation both near the shock and on the body. This results in a 
better first-truncation solution, as indicated by the stand-off distance, which in 
axisymmetric flow is in error by 30 % in the referenced work compared with G yo 
in the present results. In  the more extreme case of plane flow the corresponding 
figures are 500 and 17 %. It must be mentioned that in spite of this poor first 
truncation Swigart achieves good convergence in three or four truncations. 

Further improvements are undoubtedly possible. Van Dyke ( 1 9 6 4 ~ )  has 
suggested a modified form of expansions (12a, b)  where, in the present case, sine 
functions are replaced by tangents. This introduces a change in the third trunca- 
tion which cannot be appraised in the present two-truncation results. However, 
the equivalent modification for elongated bodies is crucial for a flow description 
far from the axis of symmetry. 

Application to the present problem 

For the present investigation two truncations were carried out following the 
general procedure described in the previous section. The first-truncation system 
(A:, = 0) is (primes denote derivative with respect to r ) :  

r-momentum 

0-momentum 
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Energy 

____ + ps + am + 5)!? p ;  - [$(a, + a,) + ;( 1 + pa) + ( 1 - a, - a,) F(Vo,) 
111 

where 

Rate 

where 

and the rate constants k and equilibrium constant K are given in table 1. Notice 
the single appearance of p ,  in the last term of the 6’-momentum equation. 

This fifth-order system was reduced to a set of five first-order equations by 
introducing IjT;(r) as a new variable and the identity $;(r )  = dIjT,/dr as a new 
equation. Initial conditions (at the shock) were obtained as follows: pl(l), Tl( l), 
and e = l/p, were calculated by introducing expansions (12b) and (12c) into the 
shock conservation equations (equations (9) and (10)) and iterating on B across 
the shock. Conditions on the stream function follow from its definition (equation 
(1 l)), expansion (12a) and continuity of streamlines across the shock, which yield 
$,( 1) = l/cr and IjT;( 1) = ps. The assumption of frozen chemical reactions across 
the shock (as = a,), together withexpansion ( 1 2 4 ,  yields al(l) = 0, which com- 
pletes the set of initial conditions. 

The second truncation was carried out by a straightforward continuation of 
the procedure as described earlier. In  each truncation, the system of first-order 
ordinary differential equations was integrated numerically by means of a 
standard predictor-corrector routine for electronic digital computation. The 
IBM7090 system of the Stanford Computation Center was used for this task. 
A first-truncation computation takes about 30 see of machine time, and a second- 
truncation computation about 3 min. 

Results are better presented when recast in terms of von Mises variables. This 
was found to  be particularly helpful in describing the portion of the flow field 
lying near the body. As a first step the stream function is normalized by referring 
it to its value a t  the shock on the line 6’ = const. Thus, the normalized stream 
function is 

and it ranges from zero at the body to unity a t  the shock. The von Mises trans- 
formation is performed by letting T become an independent variable. In  the 
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present case 8 is retained as the second independent variable, and the dependent 
variables are expanded as 

p(T, 8) = pl(T) cos2 8 + (p2(T) sin2 8 + . . . , (15a) 

qr,8) = ~ l ( r ) c ~ ~ 2 e + T 2 ( r ) s i n 2 8 +  ..., (15b) 

a(Y, 8 )  = a, + z1(T) cos2 8 + z2(T) sin28 + . . . . ( 1 5 4  

The original space (r,O) and the von Mises space (T,8) are related by the 
common independent variable 8, and the following expansion for r ,  

r(T, 8 )  = rl(T) + r2(T) sin2 8 + . . . . (16) 

Recasting of the results in von Mises variables is accomplished in two steps, by 
f i s t  introducing equation (16) into the right-hand side of equation (14) and 
re-expanding equation (14) in Taylor series about Tl(T), which yields 

TAT) = +F1(T/4, (17a) 

and 

In the second step a similar substitution of equation (16) into equation (12 b), and 
further expansion in Taylor series, gives 

P l ( V  = PlFl(V1, ( 1 8 4  

and 1 3 2 w  = P2[rl(Vl+ r2(T) .PX~l (~ ) I*  (18b) 

Relations (18) also hold for temperature and degree of dissociation. Equations 
(16), (17), and (18) serve as recurrence formulae to transform the original results 
in the ( r ,  @-space into the new results in the von Mises space (T, 0). 

The body location and shape are found from data at  the integration end-point, 
where T = 0. Thus, from equation (16), 

rb(@ = r(0,O) = rl(0)+r2(O)sin28+ .... (19) 

The quantity rl(0) is equal to the r-co-ordinate of the stagnation point, where 
+1 = T = 0. The stand-off distance referred to the shock radius is A = 1 - Fl(0) .  
The quantity F2(0) is obtained from equation (17b), used at the integration 
end-point. 

3. Discussion of results 
An example of axisymmetric flow was computed for the flight conditions and 

chemical data shown in table 1.t Two-truncation results are presented with the 
von Mises co-ordinate T as independent variable. Numerical integration and 
further transformations yield the functions pl(T), p2(T), etc., as described in the 
previous section. Then the full flow variables can be obtained throughout the 
flow field from equations (15).t These variables can be mapped into the (r,  8)-space 
by using equation (16). For this purpose the functions Pl(T) and F2(T) are pre- 
sented in figure 2 .  It can be seen that mapping involves a slight (order one) 
stretching of the r-co-ordinate, dependent from point to point upon T, 8, and the 

t Plane flows were found to exhibit the same features as axisymmetric flows, with the 
former lying nearer the equilibrium limit. 
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non-equilibrium r6gime. The corresponding distortion is small, and all qualitative 
arguments to be presented apply eqixally well to both spaces. 

0 0.2 0.4 0.6 0.8 
i-r 

FIGUIXE 2. Mapping into physical space. Broken and solid lines are first and second 
truncations, respectively. The shock is at the origin of abschm, the body at one. 

Stagnation streamline 

On the stagnation streamline, where 0 = 0, the full solution is given by the first- 
order variables as indicated by equations (15). The only approximation involved 
here is that derived from truncation. The truncation error is appraised from the 
numerical convergence of successive truncations. Although no mathematical 
study of this convergence has been made, the present reliance on two-truncation 
results is backed by solid evidence from previous research. In  the limiting case 
of a perfect gas, Swigart (1962) and Van Dyke (1964a, b )  have tested the method 
against a number of reliable results. On the stagnation streamline successive 
truncations converge monotonically to the correct values, with the difference 
between truncations becoming smaller with each step. Present results for frozen 
chemistry follow the same pattern. As an example, the stand-off distance in the 
first truncation is overestimated by about 6 yo, and in the second truncation is 
obtained as accurately as is presently known. In  the non-equilibrium rPgimes the 
convergence is expected to be qualitatively the same as in the frozen limit. Based 
on the previous considerations, results of the present investigation were regarded 
as satisfactory if the second truncation contributed only a small correction to the 
first one. This was always the case in the numerical computations. Results from 
the first and second truncations are plotted together for comparison. 

Figure 3 shows the dimensionless pressure. As explained when discussing the 
rate equation, in the present work non-equilibrium rhgimes are characterized by 
the physical size of the shock radius, with large and small radii corresponding to 
near-equilibrium and near-frozen flows, respectively. The pressure is well behaved 
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across the shock layer, and second-truncation contributions are negligible. Non- 
equilibrium effects are small, but of the same order as the over-all pressure change. 

Figure 4 shows the degree of dissociation, which has a possible range of zero 
to one (oxygen completely dissociated). Here non-equilibrium effects are drastic. 
In flows close to the equilibrium limit there is a rapid increase in dissociation 
behind the shock, followed by a near-equilibrium plateau extending to the body. 

1-r 

FIGURE 3. Dimensionless pressure on the stagnation streamline. Two truncations are 
indistinguishable to the present scale. The shock is at tho origin of abscissae, the body 
at, one. 

1-Y? 

FIGURE 4. Degree of dissociation on the stagnation streamhe. Broken and solid lines are 
first and second truncations, respectively. Tho shock is at the origin of abscissae, the 
body at one. 
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At the other extreme-near the frozen limit-dissociation remains close to the 
initial value through most of the shock layer, rising sharply toward equilibrium 
in the vicinity of the body. Concentration distributions in other non-equilibrium 
regimes are illustrated by the intermediate curves in the same figure. 
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FIGURE 5. Dimensionless temperature on the stagnation streamline. Broken and solid 
lines are first and second truncations, respectively. The shock is at the origin of abscissae, 
the body at one. 

The effects of this chemical behaviour upon other flow variables can be inferred 
from the fact that the kinetic energy of the flow is almost exhausted behind the 
shock. The energy involved in chemical reactions must then come almost entirely 
from the internal energy, which means that large differences in composition will 
be accompanied by large differences in temperature. This is illustrated in 
figure 5, where non-equilibrium solutions show that the temperature does follow 
the qualitative behaviour of the degree of dissociation. In  particular, near- 
equilibrium flows exhibit low temperatures, whereas near-frozen flows maintain 
high temperatures through most of the shock layer, followed by the now familiar 
drive toward equilibrium near the body. 

That equilibrium must be reached at the stagnation point is an intuitively 
appealing argument. It follows from the consideration that for round-nosed 
bodies it takes the flow an infinite time to reach the stagnation point from any 
finite distance. Hence, any non-zero chemical-relaxation time, however small, 
will eventually force the reaction to equilibrium. To the author’s knowledge, this 
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has never been proved rigorously. However, the numerical results of Freeman 
(1958), Murzinov (1961), and Gibson & Marrone (1962) tend to indicate that this 
is the case. The same conclusion follows from the present work. 

In the vicinity of the stagnation point a problem arises in that gradients of 
temperature and of concentration become very large. The present method to a 
certain extent overcomes this difficulty by affording arbitrarily small integration 
steps (in practice as small as one ten-millionth of the stand-off distance). How- 
ever, in near-frozen flows straightforward integration to the body (adjusting the 
step size to maintain a constant machine-integration error) eventually ends in a 
situation where vanishing increments of the independent variable arrest one's 
progress, while temperature and composition still show finite changes. For these 
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FIGURE 6. Stagnation equilibrium-drive region as a function of temperature for 
i., = 0.025 cm. Broken lines and circles indicate the original solution; solid lines indicate 
the trlansformed solution. 

cases a different approach was clearly needed. This was provided by a simple 
transformation that changes the roles of the variables so that temperature 
becomes the independent variable and distance from the shock a dependent one. 
The impenetrability of the large-gradient region is overcome, since in the new 
transformed space all slopes remain of order one. Then integration in terms of 
temperature can proceed untroubled. 

A typical case is shown in figure 6 with the new arrangement of variables. 
Several features are worth comment. The original solution is indicated by circles 
and broken lines, and is seen to overlap the new one smoothly and accurately. 
The pressure, velocity, and distance from the shock share a common trend: they 
approach constant values for a considerable range of temperatures. In  fact, from 
this behaviour emerges a region, confined to the immediate neighbourhood of the 
stagnation point, of nearly constant pressure and slow motion, but sustaining 
considerable chemical change. In this region the degree of dissociation varies 
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almost linearly with temperature, as can be seen from the corresponding curve 
in figure 6. Results from all non-equilibrium regimes plot on this single curve. 
This is in accord with the fact that in the region in question velocity, velocity 
changes, and pressure changes, are higher-order quantities, and to first order the 
dynamics and chemistry of the flow are divorced. Because the characteristic 
effect in this region is the chemical relaxation toward equilibrium, it will here be 
referred to as the stagnation equilibrium-drive region. 

Whether or not equilibrium is actually achieved a t  the stagnation point is a 
different question. In  the transformed space (figure 6) the stagnation point u = 0 
cannot be pinpointed for lack of numerical accuracy. However, in view of present 
results the following argument can be put forth: Equation (3) (the rate equation) 
shows that on the stagnation streamline, and for finite flow and chemical-relaxa- 
tion times, the non-equilibrium function x behaves like the product u(aa/ar). 
In  near-frozen flows laa/arl increases monotonically as the stagnation point is 
approached. Provided this quantity remains non-zero, if equilibrium (x = 0)  is 
attained anywhere, it can only occur at the stagnation point u = 0. Figure 6 (and 
all similar computations) show x approaching zero unambiguously. Barring 
strange singularities a t  u = 0 or x = 0 or both, this is strong evidence that 
equilibrium is in fact attained at the stagnation point. For present purposes the 
stagnation point is assumed located a t  x = 0. 

The near-frozen flows shown in figures 4 and 5 can be computed up to the 
stagnation point through the transformation described in the preceding para- 
graphs. The corresponding results show the stagnation equilibria to be grouped 
closely, They do not coincide, but differences appear only in the fourth significant 
figure for degree of dissociation, and the fifth figure for temperature. The pressnre 
is more sensitive, as shown in figure 3. 

Figure 5 illustrates the singular nature of the frozen limit. As the ratio of flow 
to chemical-relaxation time is continuously decreased, temperature profiles 
become fuller near the body but end conditions change insignificantly. When the 
frozen limit is reached (top curve) there is a sudden jump in the end condition. 
This behaviour is remindful of the singular limit of zero viscosity in boundary- 
layer theory or, for that matter, of the equilibrium limit at the shock in the 
present problem. 

The stagnation equilibrium drive occurs in some region near the stagnation 
point, corresponding to the large gradients near 1 -T = 1.0 in figures 4 and 5 
The extent of this region varies with the non-equilibrium rkgime, but a qualitative 
idea of its thickness can be obtained by defining it as the distance from the body 
surface at which the slope dT,/dr becomes greater than an arbitrarily chosen 
value. The thickness 6 so d e h e d  appears consistently as shown on figure 7 for 
a typical value of dT,/dr. Starting with zero thickness in the frozen limit (PS = O ) ,  
the equilibrium-drive region quickly broadens to maximum thickness in some 
non-equilibrium regime, thereafter decreasing asymptotically to zero thickness 
in the equilibrium limit (FS -+ a). This implies that the equilibrium drive is present 
throughout the non-equilibrium rkgimes, resulting in large property gradients 
and over-all changes near the frozen limit, and still large gradients but vanishing 
over-all changes as the equilibrium limit is approached. 
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The stand-off distance is known to be sensitive to non-equilibrium changes. 
This is due to differences in density resulting from changing temperature and 
composition levels as Aows range from equilibrium to frozen conditions. Present 
results for stand-off distance are shown in figure 8. It can be seen that near the 
equilibrium limit (where density levels are high) the stand-off distance is smallest, 
and weakly dependent upon the flow rkgime. Most of the change in stand-off 
distance occurs near the frozen limit. The present results include molecular 
vibration. Without vibration, the first and second truncations in the frozen limit 
yield stand-off distances of 0.1056 and 0.09988 of the shock radius, respectively. 
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FIGURE 7. Thickness of equilibrium-drive region. The edge is defined 
&s the point where dTJdr = 140. 

PlowJield away from the axis of symmetry 

Flow variables away from the axis are obtained from equations (15). In  this 
representation the first-order terms include a cosinusoidal-square decay with 8, 
to which is added a second-order correction that grows like sin2 8. In  this section 
the second-order coefficients (subscript 2) are discussed. They represent departures 
from the postulated cos28 variation of the first-order terms. 

As indicated previously, expansions of the type of equations (15) are asymp- 
totic for small 8. They provide a good representation of the flow field near the 
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stagnation streamline. As 6' is increased they generally lose accuracy, and a larger 
number of terms is needed in the series. The extent of the region where a given 
number of terms provides a faithful representation of the flow field is not known 
apriori. However, an idea ofthe range of validityisobtained fromswigart (1962), 
who gets reasonable results near the sonic line with three truncations. Van 
Dyke's (1964a) more advanced formulation of the expansions leads to very good 
results in the sonic region in two truncations, for the test case of a paraboloidal 
shock in a perfect-gas flow. In  the present investigation the effort was not directed 
toward the obtainment of particularly good results over the whole subsonic 
region, but rather toward a better understanding of non-equilibrium flows. 
Present results ean be improved far from the axis by a systematic computation of 
more truncations, among other possibilities. 

Figure 9 shows the pressure function F2(T) as obtained from the second 
truncation. Like the first-order coefficient PI, it  is well behaved across the shock 
layer, and is fairly insensitive to non-equilibrium effects. 

FIGURE 9. Dimensionless pressure function. The shock is at the 
origin of abseissao, the body at one. 

Figure 10 shows the degree-of-dissociation function Z2(T). Here non-equi- 
librium effects are pronounced. I n  particular, as the frozen limit is approached 
large slopes are present near the body. This creates the same type of problem 
encountered on the stagnation streamline, and with worse computational 
difficulties. In  perturbation schemes sueh as the present one singularities often 
tend to get worse as they spread to higher-order terms, which behave like deriva- 
tives of the previous ones. I n  the present case end-point values cannot be deter- 
mined accurately in near-frozen flows. Within this limitation, values of ?i2 of a 
score or more were sometimes obtained as the body was approached. This is 
within the restriction that Z2 should remain of order one. However, if these large 
values are not due to numerical inaccuracy, they imply (equation (15c)) that 
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within a short distance of the stagnation point the degree of dissociation becomes 
greater than unity, a situation which is physically impossible. It appears, then, 
that the radius of convergence of the present expansions is severely limited as the 
stagnation point is approached. 

From the previous discussion it follows that in near-frozen flows there is a 
region of the flow field extending away from the stagnation point, and very near 
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FIGURE 10. Degree-of-dissociation function. The shock is at the origin 
of abscissae, the body at one. 

the body, which is not accessible with the present approach. As a consequence, 
the question is left unanswered as to whether an entropy layer exists near the 
body due to the stagnation equilibrium-drive phenomenon. The existence of 
such a layer can be argued on the ground that in near-frozen flows entropy- 
increasing chemical reactions are negligible everywhere, except for the body 
streamline and neighbouring ones that sustain the stagnation equilibrium drive. 
Under these conditions large entropy gradients could exist in the direction normal 
to the body surface. It would appear that the answer to this question should be 
sought by a different approach, such as the method of matched asymptotic 
expansions for the local treatment of perturbation singularities. 

Figure 11 shows the temperature function Tiz(Y). Similar comments apply to 
this variable. Figure 12 shows the flow variables on the body (referred to their 
stagnation-point values) in the non-equilibrium regimes corresponding to shock 
radii of 10 and 2.5 cm. Results are plotted up to forty degrees from the axis for 

6-2 
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FIGURE 11. Dimensionlm teniperature function. The shock is at the 
origin of abscissae, the body at one. 

1 -0 

0.8 

0.6 

0 4  

0.2 

0 10 20 30 40 
0 (degrees) 

stagnation-point values. 
FIGURE 12. Flow variables on the body surface referred to their 
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the purpose of showing trends only. This does not reflect an expected range of 
validity. In broken lines are shown the Newtonian pressure, and the degree of 
dissociation for local equilibrium. The latter was computed by means of the law 
of mass action, from local values of pressure and temperature. Notice that the 
non-equilibrium composition lags local equilibrium values by amounts that 
increase in the direction of the frozen limit. The composition curves are generally 
flat, an indication of early chemical freezing. 

Axisymmetric body shapes are given by equation (19) and can be represented 
graphically on any plane of symmetry as shown in the insert of figure 13. Both 
the location and the shape of the body are sensitive to the non-equilibrium regime. 
The location is given by the stand-off distance A = 1 - Fl(0) which was discussed 
previously (see figure 8). The shape is represented by F2(0), which is shown in 
figure 13. As non-equilibrium flows depart the frozen limit the body recedes more 
from a circle concentric with the shock. There is a maximum, followed by the 
reverse trend: as the equilibrium limit is approached the body moves back toward 
a circle concentric with the shock. 

Comparison of results 

It has been mentioned elsewhere that in the frozen (perfect-gas) limit the present 
method has been tested in a number of cases and found to give very good results 
over a large portion of the subsonic flow region. In non-equilibrium regimes 
comparison of results is more difficult. Notoriously lacking in exact scaling, 
non-equilibrium flows depend upon a number of parameters that must be 
duplicated for the purpose of comparison. To make matters worse, chemical gas 
models vary with the author, and chemical-kinetic information for these models 
includes a large margin of uncertainty. This spells a major task for the surveyor 
of results. 

In the present investigation a comparison was made for only one non-equi- 
librium situation. For this purpose the theoretical results of Hall et at. (1962) were 
selected, partly because of their freedom from restrictive assumptions, and also 
because they have served as a standard for other authors. Of present interest are 
the results corresponding to an altitude of 150 kiloft., free-stream speed of 
15,00Oft./sec, and nose radius of 0-183ft. Hall et al. used full air chemistry for 
flow behind a catenary shock. This differs from the present simplified chemistry, 
but for the given free-stream conditions most of the chemical effects come from 
the dissociation of oxygen, which is presently accounted for. For this case Hall’s 
rate and equilibrium constants were used. As for the catenary shock, upon 
inspection it proves to be very close to a circle for angles well past 8 = 9.2 degrees, 
where the comparison is made. Results are shown in figure 14. The largest 
discrepancy is in the degree of dissociation (fraction of atomic oxygen) and is due 
to Hall’s inclusion of NO reactions, which are disregarded in the present work. 
A rough way of accounting for the oxygen involved in NO is simply to add it to 
the atomic oxygen, in which case the top curve is obtained. Temperature and 
density are in very good agreement with Hall’s results. The discrepancy near the 
body is undoubtedly due to the more complex oxygen exchange in Hall’s reactions. 
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FIGURE 13. Body shape. 
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FIGURE 14. Comparison of results. Hall’s results are shown in broken lines, the present 
results in solid lines. The co-ordinate y is a radial distance measured from the shock. 

4. Conclusions 
The method of series truncation provides a relatively simple way of analysing 

non-equilibrium blunt-body flows without the benefit of hypersonic simplifica- 
tions. One works with ordinary differential equations, which is a marked 
advantage since numerical integration is then a matter of simple routine. AS 
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an added benefit a powerful resolution of the flow field is obtained because of the 
arbitrarily small integration mesh. This allows the user to cope with the drastic 
changes in chemical and thermodynamic variables existing across the blunt-body 
non-equilibrium flow field. 

First-approximation results are easy to obtain, and systematic improvement 
is an inherent feature of the scheme. A careful choice of variables and expansions 
minimizes the truncation error stemming from the elliptic nature of the subsonic 
flow equations. In  this sense, pressure is to be preferred over density as a working 
variable. The electronic computer is used sparingly, and results bear semi- 
analytic representation. A shortcoming exists in the need for analyticity-or 
a t  least ‘smoothness’-of the flow field in order to represent it far from the 
axis. 

In  the present investigation this method was used to analyse a wide range of 
non-equilibrium rbgimes. In particular, near-frozen flows were followed to the 
vicinity of the stagnation point through large gradients of temperature and 
composition. In  this region reacting flows are better analysed in terms of tem- 
perature. The present computations show good evidence that equilibrium is 
actually attained at the stagnation point. 

As non-equilibrium rbgimes in the shock layer approach the frozen limit, the 
final state of equilibrium changes almost imperceptibly. However, in the frozen 
limit there is a sudden jump to perfect-gas values at the wall. This singular nature 
of the frozen limit underlies the equilibrium drive taking place a t  constant 
pressure near the wall. The situation is reminiscent of Prandtl’s boundary layer, 
which is associated with the singular limit of zero viscosity. The development 
along the body of an entropy layer due to the equilibrium-drive phenomenon is 
a question open to further research. 

The present work was supported by the U.S. Air Force Office of Scientific 
Research under Contract No. AF49(638)-1280. The author is indebted to 
M. D. Van Dyke for his advice and criticisms. Discussions with W. G .  Vincenti 
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